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A B S T R A C T

Background: Sugar-sweetened beverages (SSBs) providing excess energy increase adiposity. The effect of other food sources of sugars at different
energy control levels is unclear.
Objectives: To determine the effect of food sources of fructose-containing sugars by energy control on adiposity.
Methods: In this systematic review and meta-analysis, MEDLINE, Embase, and Cochrane Library were searched through April 2022 for controlled trials
�2 wk. We prespecified 4 trial designs by energy control: substitution (energy-matched replacement of sugars), addition (energy from sugars added),
subtraction (energy from sugars subtracted), and ad libitum (energy from sugars freely replaced). Independent authors extracted data. The primary
outcome was body weight. Secondary outcomes included other adiposity measures. Grading of Recommendations Assessment, Development, and
Evaluation (GRADE) was used to assess the certainty of evidence.
Results: We included 169 trials (255 trial comparisons, n ¼ 10,357) assessing 14 food sources at 4 energy control levels over a median 12 wk. Total
fructose-containing sugars increased body weight (MD: 0.28 kg; 95% CI: 0.06, 0.50 kg; PMD ¼ 0.011) in addition trials and decreased body weight (MD:
�0.96 kg; 95% CI: �1.78, �0.14 kg; PMD ¼ 0.022) in subtraction trials with no effect in substitution or ad libitum trials. There was interaction/influence
by food sources on body weight: substitution trials [fruits decreased; added nutritive sweeteners and mixed sources (with SSBs) increased]; addition trials
[dried fruits, honey, fruits (�10%E), and 100% fruit juice (�10%E) decreased; SSBs, fruit drink, and mixed sources (with SSBs) increased]; subtraction
trials [removal of mixed sources (with SSBs) decreased]; and ad libitum trials [mixed sources (with/without SSBs) increased]. GRADE scores were
generally moderate. Results were similar across secondary outcomes.
Conclusions: Energy control and food sources mediate the effect of fructose-containing sugars on adiposity. The evidence provides a good indication that
excess energy from sugars (particularly SSBs at high doses �20%E or 100 g/d) increase adiposity, whereas their removal decrease adiposity. Most other
food sources had no effect, with some showing decreases (particularly fruits at lower doses �10%E or 50 g/d). This trial was registered at clinicalt
rials.gov as NCT02558920 (https://clinicaltrials.gov/ct2/show/NCT02558920).
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Introduction

Sugar consumption is as a public health concern, with a focus on
those containing fructose owing to its unique metabolism and its implied
contribution toward obesity and the related downstream cardiometabolic
implications. Fructose is believed to act as an unregulated substrate for
de novo lipogenesis, bypassing negative feedback control, unlike its
glucose counterpart. This mechanism is postulated to impair other
metabolic signaling and lead to increased adiposity [1,2]. Animal
models, ecological studies, and some fructose overfeeding trials have
been conducted with levels of exposure much greater than population
intake and they support these proposed mechanisms and report the
harmful effects of fructose-containing sugar consumption. However,
systematic review and meta-analyses of controlled trials have demon-
strated that harmful effects on some cardiometabolic outcomes, such as
body weight, are only observed when fructose-containing sugars are
consumed as excess energy [3–7]. Furthermore, there is some evidence
that the effect of fructose-containing sugars on adiposity may differ for
different food sources. For example, sugar-sweetened beverages (SSBs)
providing excess energy consistently show increases in body weight and
are associated with an increased risk of obesity [8–10], whereas other
food sources of fructose-containing sugars such as fruit are not associ-
ated with a harm but rather a benefit [11]. It remains uncertain whether
there is any relationship between other food sources of
fructose-containing sugars and adiposity at different levels of energy
control. To inform public health guidance and policy on sugars, the
American Society for Nutrition commissioned a systematic review and
meta-analysis of controlled trials on the effect of different food sources
of fructose-containing sugars at different levels of energy control on
body weight and other measures of global and abdominal adiposity with
an assessment of the certainty of evidence using Grading of Recom-
mendations, Assessment, Development, and Evaluation (GRADE).

Methods

We followed the Cochrane Handbook for Systematic Reviews of
Interventions (version 6.3) [12] to conduct this systematic review and
meta-analysis and reported our results following the PRISMA guide-
lines [13]. The study protocol was registered at clinicaltrials.gov
(NCT02558920).
Data sources and search strategy
We conducted a systematic search in MEDLINE, Embase, and the

Cochrane Central Register of Controlled Studies databases through 4
April 2022. Supplemental Tables 1 and 2 present the search strategy.
There were no language restrictions. Validated filters were applied [14].
The searches were supplemented with manual searches of the reference
lists from the included trials.
Study selection
We included randomized and nonrandomized controlled feeding

trials in humans of all health backgrounds and ages, with interven-
tion periods �14 d [9], investigating the effect of orally consumed
fructose-containing sugars from various food sources compared with
control diets free or lower in fructose-containing sugars on body
weight and measures of global (BMI ad body fat) and abdominal
adiposity (waist circumference, WHR, and visceral adipose tissue
[VAT]). We excluded studies of liquid meal replacement in-
terventions and studies of interventions or comparators of rare
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sugars that contain fructose (e.g., isomaltulose, melezitose, and
turanose) or were low-calorie epimers of fructose (e.g., allulose,
tagatose, and sorbose). Reports were initially excluded based on a
review of their titles and abstracts by a single reviewer. Those re-
ports that remained were then excluded based on a review of the
full-text reports by at least 2 of the reviewers (LC, AC, SA-C, DL,
AA, QL, FA-Y, XQ, SB, NM, VH), leaving the final set of reports to
be included in our syntheses. We prespecified the following 4 study
designs based on energy control: 1) “substitution” trials, in which
energy from the food sources of fructose-containing sugars was
substituted for other non–fructose-containing macronutrients under
energy-matched conditions; 2) “addition” trials, in which excess
energy from the food sources of fructose-containing sugars was
added to the background diet compared with the same diet alone
without the excess energy (with or without the use of
nonnutritive/low-calorie sweeteners to match sweetness); 3) “sub-
traction” trials, in which energy from the food sources of
fructose-containing sugars was subtracted from background diets
compared with the original background diets through displacement
by water or low-calorie sweeteners or elimination altogether; and 4)
“ad libitum” trials, in which energy from the food sources of
fructose-containing sugars was freely replaced with other non-
–fructose-containing macronutrients without any strict control of
either the study foods or the background diets, allowing for free
replacement of energy. In reports containing more than 1 eligible
trial comparison, we included each available trial comparison
separately.

Data extraction
At least 2 reviewers independently extracted data from eligible

studies. Relevant information included food source of fructose-
containing sugars, number of participants, setting, participant health
status, study design, level of feeding control, randomization, compar-
ator, fructose-containing sugar type, macronutrient profile of the diets,
follow-up duration, energy balance, funding source, and outcome data.
Supplemental Table 3 summarizes the definitions of the different food
sources of fructose-containing sugars. The authors were contacted for
missing outcome data when it was indicated that an adiposity outcome
was measured but not reported. Graphically presented data were
extracted from figures using the Plot Digitizer [15].

Risk of bias assessment
Included studies were assessed for the risk of bias (ROB) inde-

pendently and in duplicate by �2 reviewers using the Cochrane ROB
Tool [16]. Assessment was performed across 6 domains of bias
(sequence generation, allocation concealment, blinding, incomplete
outcome data, selective outcome reporting, and other). The ROB for
each domain was assessed as “low” (proper methods taken to reduce
bias), “high” (improper methods creating bias), or “unclear” (insuffi-
cient information provided). The other domain applied only to cross-
over trials; “high” ROBwas given when there was no washout between
interventions; otherwise, the trial was rated as low. Reviewer discrep-
ancies were resolved by consensus or arbitration by the senior author
(JLS).

Outcomes
The primary outcome was body weight. Secondary outcomes

included measures of global (BMI and body fat) and abdominal
adiposity (waist circumference, WHR, VAT). Mean differences (MDs)
between the intervention and control arm and their standard errors
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(SEs) were extracted for each eligible trial comparison. If unavailable,
they were derived from available data using published formulas [12]
(chapter 6). Mean pairwise differences in change-from-baseline values
were preferred over end values, when available. When median data
were provided, they were converted to mean data with corresponding
variances using methods developed by Luo et al. [17] and Wan et al.
[18]. When no variance data were available, the standard deviation was
borrowed from a trial similar in size, participants, and nature of
intervention, including food source and dose [19]. When an outcome
was not reported, but the variables to calculate that variable was, the
outcome was calculated using a standard formula (body weight and
height were used to calculate BMI; BMI and height were used to
calculate the body weight; body fat mass (in kilograms) and total body
weight (in kilograms) were used to calculate percentage body fat; and
waist and hip measurements were used to calculate the WHR).
Data syntheses and analyses
We used the Stata software (version 16.1; StataCorp) for all ana-

lyses. As our primary research question was to assess the effect of
different food sources of fructose-containing sugars at different energy
control levels, we performed separate pairwise meta-analyses for each
of the 4 prespecified designs by energy control level (substitution,
addition, subtraction, and ad libitum trials) and assessed the interaction
(variation in the effect estimates) by food source of fructose-containing
sugars within each energy control level using the Cochrane Handbook
recommended standard Q test for subgroup differences using meta-
regression (significance at P < 0.10) [20–22]. In the absence of
interaction, we also assessed the influence of the food source. If 1 food
source had�50% of the weight in a pooled analysis, we determined the
food source to have a disproportionate influence on the analysis. If �3
food sources provided 100% of the weight in the pooled analysis, we
determined that we could not rule out an influence of the food source.
In these scenarios, there is an important influence because we cannot
draw conclusions regarding the effect of total fructose-containing
sugars independent of the food source.

The principal effect measures were the mean pairwise differences in
change-from-baseline (or alternatively, end differences) between the
intervention arm providing a source of fructose-containing sugars and
the comparator/control arm (devoid of or low in fructose-containing
sugars) in each study (significance at P < 0.05). Data were analyzed
using the generic inverse variance method with the DerSimonian and
Laird random-effects model [12,23]. A fixed-effects model was used
when <5 trial comparisons were available [24]. Paired analyses were
applied to all crossover trials with the use of a within-individual cor-
relation coefficient between the treatments of 0.5 as described by
Elbourne et al. to calculate SEs [25–27]. Data were expressed as MDs
with 95% CIs for all outcomes with the exception of VAT, in which data
were expressed as standardized mean differences (SMDs) [28]. To
mitigate a unit-of-analysis error, when arms of trials with multiple
intervention or control arms were used more than once, the corre-
sponding sample size was divided by the number of times it was used
for the calculation of the standard error [29].

Heterogeneity was assessed by visual inspection of the forest
plots and using the Cochrane Q statistic and quantified using the I2

statistic [12] (chapter 10). We considered an I2 � 50% and PQ <

0.10 as evidence of substantial heterogeneity [12] (chapter 10).
Sources of heterogeneity were explored by sensitivity analyses,
including individual trial influence, altering the pairwise comparison
correlation coefficient, and subgroup analyses. The individual trial
influence analysis systematically removed each trial comparison
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from the meta-analysis with recalculation of the summary effect
estimate. A trial whose removal explained the heterogeneity or
changed the significance, direction, or magnitude of the effect by
more than the minimally important difference (MID) for each
outcome [prespecified as 0.5 kg for body weight, 0.2 kg/m2 for BMI,
2% for body fat, 0.5 cm for waist circumference, 0.02 for WHR [30,
31], and 0.08 SMD for VAT (5% of the baseline in SMD units)] was
considered an influential trial. To determine whether the overall
results were robust to the use of different correlation coefficients in
crossover trials, we also conducted sensitivity analyses using cor-
relation coefficients of 0.25 and 0.75. Furthermore, we conducted
sensitivity analyses where we removed those trial comparisons in
which nonmean summary statistics (e.g. medians) were used to es-
timate means. If �10 trials were available [21,32], we conducted
subgroup analyses to explore sources of heterogeneity using
meta-regression (significance at PQ < 0.05). A priori subgroup an-
alyses were conducted by participant health status, whether
randomization was used (yes, no), energy balance of the intervention
relative to the basal diet (neutral, positive, and negative), baseline
outcome levels, fructose sugar type (fructose, sucrose, fruit,
high-fructose corn syrup, and mixed type), comparator, study design,
follow-up duration, feeding control (dietary advice and supple-
mented, metabolic), fructose-containing sugar dose, sugar regulatory
designation (naturally occurring, added, and mixed), sugar food
form (solid, liquid, and mixed), funding, and ROB. Post hoc sub-
group analyses were conducted by the type of imputation performed
for deriving variances (change from the baseline and end differ-
ences), data source (reported, plot digitized, calculated, and author
provision of data), and weight maintenance (yes/no).
Meta-regression analyses were used to assess the significance of
each subgroup categorically and, when applicable, continuously.

If �6 trial comparisons were available [33], then we assessed linear
and nonlinear (restricted cubic splines) dose-response relationships
(significance at P < 0.05) using meta-regression. We also assessed
nonlinear dose-response threshold effects with 3 prespecified spline
knots at important public health thresholds of 5% [34,35], 10% [35,36],
and 25% [37] total energy (%E).

If �10 trials were available, then we assessed for the presence of
small-study effects (publication bias) by visual inspection of contour-
enhanced funnel plots and formal testing with Egger [38] and Begg
[39] tests (significance at P < 0.10) [40]. If there was evidence of
small-study effects (publication bias), then we quantified the size of the
potential publication bias or other causes of asymmetry by adjusting for
the funnel plot asymmetry and assessing the effect of small-study ef-
fects using the trim-and-fill method of Duval and Tweedie [41].
Certainty of the evidence
The certainty of the evidence was assessed using the GRADE

approach and software (GRADEpro GDT, McMaster University and
Evidence Prime) [42]. The assessments were conducted by at least 2 of
the independent reviewers (LC, DL, AA, SA-C), and discrepancies
were resolved by consensus or arbitration by the senior author (JLS).
The evidence was rated as high, moderate, low, or very low certainty.
The included controlled trials were initially rated as high certainty by
default and then downgraded or upgraded based on prespecified
criteria. Reasons for downgrading the evidence included ROB
(assessed by the Cochrane ROB Tool [16]), inconsistency (substantial
unexplained interstudy heterogeneity: I2 > 50% and PQ < 0.10),
indirectness (presence of factors that limit the generalizability of the
results), imprecision (the 95% CI for effect estimates overlap the MID
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for benefit or harm), and publication bias (significant evidence of
small-study effects). The reason for upgrading the evidence was the
presence of a significant dose-response gradient [43–48]. The impor-
tance of the magnitude of the pooled estimates was assessed using our
prespecified MIDs and the effect size categories according to the
GRADE guidance [42,49–51] as follows: a large effect (�5� MID);
moderate effect (�2� MID); small important effect (�1� MID); and
trivial/unimportant effect (<1 MID).

Results

Search results
Figure 1 shows the flow of the literature. We retrieved 10,182 re-

ports from databases and manual searches, 9612 of which were
excluded based on the title or abstract. Of the 497 reports reviewed in
full text, 169 reports of controlled feeding trials (255 trial comparisons,
n ¼ 10,357) met the eligibility criteria [52–220]. These trials included
14 different food sources of fructose-containing sugars [SSB; sweet-
ened dairy; sweetened dairy alternative (soy); 100% fruit juice; fruit
drink; fruit; dried fruit; mixed fruit forms; sweetened cereal grains and
bars; sweets and desserts; honey; added nutritive (caloric) sweetener;
mixed sources (with SSBs), and mixed sources (without SSBs)] across
4 energy control levels: substitution (126 trial comparisons); addition
(104 trial comparisons); subtraction (13 trial comparisons); and ad
libitum (12 trial comparisons). The mixed sources (without SSBs) food
category includes those trials in which the intervention included more
than one of the food sources, excluding SSBs (e.g., sweets and desserts
and fruits).

Trial characteristics
Table and Supplemental Table 4 summarize the trial characteristics.

Trial sizes ranged from a median of 13 participants (range: 5–159) in ad
libitum trials to 68 participants (range: 7–318) in subtraction trials.
Participants were a mix of adults with and without obesity or with a
diagnosed chronic condition (e.g., diabetes) or at elevated risk for CVD
(e.g., dyslipidemia and metabolic syndrome). There were approxi-
mately equal ratios of both sexes in all trial categories. Most partici-
pants were middle-aged adults, with ages ranging from a mean of 32 y
(range: 21–43 y) in subtraction trials to 44 y (range: 22–70 y) in sub-
stitution trials. Most trials were conducted in an outpatient setting
(85%–100%), performed in North American and European countries,
and were parallel in design (55% in substitution, 63% in addition, 69%
in subtraction, and 25% in ad libitum trials). Feeding control was
mostly supplemented for substitution (56%), addition (90%), subtrac-
tion (31%), and ad libitum (33%) trials. The energy intake in the ad
libitum trials was usually held within reasonable limits (e.g. the energy
intake was required to be between 75% and 125% of predicted daily
energy requirements [190]). Most studies were randomized (69%–

83%). The dose of fructose-containing sugars ranged from a median of
11% (range: 1%–33%) in addition trials to 18% (range: 5%–30%) of
total energy intake in ad libitum trials. The follow-up duration ranged
from a mean of 7 wk in addition trials (range: 2–24 wk) to 22 wk in
subtraction trials (range: 2–48 wk). Most trials were funded by agency
sources (government, not-for-profit health agency, or university sour-
ces) for substitution (31%), addition (57%), and subtraction (38%)
trials, with agency and industry sources for ad libitum trials (50%). The
comparators for substitution trials were mostly starch comparators
(50/126, 40%), followed by glucose (25/126, 20%) and mixed com-
parators (24/126, 19%), diet alone for addition trials (64/104, 62%),
nonnutritive sweetener for subtraction (5/13, 38%), and starch for ad
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libitum trials (6/12, 50%). The main food sources were mixed sources
(with SSBs) (44/126, 35%) for substitution, SSBs (23/104, 22%) and
100% fruit juice (23/104, 22%) followed by fruit (20/104, 19%) for
addition, SSBs (7/13, 54%) for subtraction, and mixed sources (with
SSBs) (10/12, 83%) for ad libitum trials.

Risk of bias
Supplemental Figures 1–6 show a summary of the ROB assess-

ments of the included trials. Across energy designs, most trials were
assessed as having unclear ROB in random sequence generation (31%–

46%) and allocation concealment (46%–57%) domains due to unclear
and/or incomplete reporting, while there was a fairly close split be-
tween unclear and low assessments for blinding (31%–92% unclear)
incomplete outcome data (55%–100%), and selective outcome
reporting (0%–51%) domains. Most crossover trials were assessed as
having low ROB in the “other” (carryover effects) domain (76% in
substitution, 79% in addition, 100% in subtraction and 85% in ad
libitum trials). Fewer studies were assessed as having high ROB, for
random sequence generation (27%–50%), allocation concealment
(30%–50%), blinding of participants and personnel (0%–8%),
incomplete outcome data (0%–2%), selective outcome reporting (0%–

2%), and other (carryover effects) (0%–50%) ROB domains. Thus,
there was no overall serious ROB in most trial comparisons except for
in substitution and addition trials of total fructose-containing sugars for
body weight and VAT, respectively, and trials of SSBs for BMI,
sweetened cereal grains and bars for body fat and WHR, and honey for
waist circumference, where the overall pooled estimate was driven by
high ROB trials.

Primary outcome
Figure 2 and Supplemental Figures 7–12 present the effect of

different food sources of fructose-containing sugars on the primary
outcome, body weight, at 4 levels of energy control. Total fructose-
containing sugars resulted in an increase in body weight for addition
trials (90 trials; MD: 0.28 kg; 95% CI: 0.06, 0.50 kg; PMD ¼ 0.011;
substantial heterogeneity: I2 ¼ 57.4%; PQ < 0.001), whereas there was
a reduction in the body weight in subtraction trials (13 trials; MD:
�0.96 kg; 95% CI: �1.78, �0.14 kg; PMD ¼ 0.022; substantial het-
erogeneity: I2 ¼ 69.0%; PQ < 0.001), and no effect in substitution (119
trials; MD: 0.04 kg; 95% CI: �0.07, 0.16 kg; PMD ¼ 0.469; no sub-
stantial heterogeneity: I2 ¼ 2.7%; PQ ¼ 0.401) and ad libitum trials (12
trials; MD: 0.77 kg; 95% CI:�0.29, 1.82 kg; PMD ¼ 0.154; substantial
heterogeneity: I2 ¼ 79.9%; PQ < 0.001).

An interaction by food source was detected in the substitution (P <

0.001), addition (P < 0.001), and ad libitum (P < 0.001) trials. In
substitution trials, fruit (10 trials; MD: �0.38 kg; 95% CI: �0.57,
�0.20 kg; PMD < 0.001; no heterogeneity: I2 ¼ 0.0%; PQ ¼ 0.708)
resulted in a decrease in the body weight, whereas added nutritive
(caloric) sweetener (13 trials; MD: 0.66 kg; 95% CI: 0.13, 1.19 kg;
PMD ¼ 0.014; no heterogeneity: I2 ¼ 0.0%; PQ ¼ 0.968) and mixed
sources (with SSBs) (42 trials; MD: 0.27 kg; 95% CI: 0.09, 0.45 kg;
PMD ¼ 0.003; no substantial heterogeneity: I2 ¼ 0.0%; PQ ¼ 0.675)
resulted in an increase in the body weight, whereas no other food
sources showed an effect with variable directions of effect. In addition
trials, because dose was a major explanatory factor of the effect size for
fruit and 100% fruit juice (please see the “Subgroup analyses” section),
the data for �10%E and >10%E for these 2 foods were presented
separately. Moreover, 100% fruit juice (at �10%E) (9 trials; MD:
�1.30 kg; 95% CI: �2.38, �0.22 kg; PMD ¼ 0.018; no substantial
heterogeneity: I2 ¼ 20.2%; PQ ¼ 0.263); fruits (at �10%E) (14 trials;



FIGURE 1. The flow of literature on the effect of food sources of fructose-containing sugars and adiposity. SRMA, systematic review, and meta-analysis.
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MD: �0.60 kg; 95% CI: �1.19, �0.01 kg; PMD ¼ 0.048; no hetero-
geneity: I2 ¼ 0.0%; PQ ¼ 1.000); dried fruits (3 trials; MD: �1.29 kg;
95% CI: �2.01, �0.57 kg; PMD < 0.001; no heterogeneity: I2 ¼ 0.0%;
PQ ¼ 0.913); and honey (5 trials; MD: �1.65 kg; 95% CI: �2.46,
745
�0.85 kg; PMD < 0.001; no heterogeneity: I2 ¼ 0.0%; PQ ¼ 0.653)
resulted in a decrease in the body weight, whereas SSBs (21 trials; MD:
0.49 kg; 95% CI: 0.24, 0.74 kg; PMD < 0.001; no substantial hetero-
geneity: I2 ¼ 40.0%; PQ ¼ 0.029), fruit drinks (14 trials; MD: 0.90 kg;



FIGURE 2. A summary plot for the effect of different food sources of fructose-containing sugars on the body weight. Data are weighted mean differences (95%
CIs) for the summary effects of individual food sources and total food sources on body weight. Analyses conducted using generic, inverse variance random-effects
models (at least 5 trials available), or fixed-effects models (fewer than 5 trials available). Between-study heterogeneity was assessed by the Cochrane Q statistic,
where PQ < 0.100 was considered statistically significant, and quantified by the I2 statistic, where I2 � 50% was considered evidence of substantial heterogeneity.
The effects of total fructose-containing sugars are denoted by the bolded lines, with the effect estimates as diamonds. The effects of individual food sources are
denoted by the nonbolded lines, with the effect estimates as squares. Any statistically significant reductions are highlighted in green and significant increases in red.
The GRADE of randomized controlled trials are rated as “high” certainty of evidence and can be downgraded by 5 domains and upgraded by 1 domain. The white
squares represent no downgrades, the filled black squares indicate a single downgrade or upgrades for each outcome, and the black square with a white “2” indicates
a double downgrade for each outcome. DRM, dose-response model; GRADE, Grading of Recommendations, Assessment, Development and Evaluation; MD, mean
difference; N, number; ROB, risk of bias; SSB, sugar-sweetened beverage. (A) Because all included trials were randomized or nonrandomized controlled trials, the
certainty of the evidence was graded as high for all outcomes by default and then downgraded or upgraded based on prespecified criteria. Criteria for downgrades
included risk of bias (ROB) (downgraded if most trials were considered to be at high ROB); inconsistency (downgraded if there was substantial unexplained
heterogeneity: I2 � 50%; PQ < 0.10); indirectness (downgraded if there were factors absent or present relating to the participants, interventions, or outcomes that
limited the generalizability of the results); imprecision [downgraded if the 95% CI crossed the minimally important difference (MID) for harm or benefit set at 0.5 kg
for body weight, 0.2 kg/m2 for BMI, 2% for body fat, 0.5 cm for waist circumference, and 0.02 for waist-to-hip ratio] [30,31]; and publication bias (downgraded if
there was evidence of publication bias based on the funnel plot asymmetry and/or significant Egger or Begg test (P < 0.10), with confirmation by adjustment using
the trim-and-fill analysis of Duval and Tweedie [41]). The criteria for upgrades included a significant dose-response gradient. (B) For the interpretation of the
magnitude, we used the MIDs (see A) to assess the importance of magnitude of our point estimate using the effect size categories according to the new GRADE
guidance. Then, we used the MIDs to assess the importance of the magnitude of our point estimates using the effect size categories according to the GRADE
guidance [42,49,51] as follows: a large effect (�5� MID); moderate effect (�2� MID); small important effect (�1� MID); and trivial/unimportant effect (<1
MID). *Because categorical subgroup analyses by dose for 100% fruit juice and fruit in addition trials for body weight showed significant interaction (with a
threshold at 10%E), and dose is a major domain of the assessment of certainty of evidence, we presented the data separately for �10%E and >10%E, rather than
present the total pooled analysis and downgrade for serious inconsistency. **Where there was a significant interaction by food source in substitution and addition
trials and SSBs and/or mixed sources (with SSBs) were the sole food sources in subtraction and ad libitum trials, we performed the GRADE analysis for each
individual food source. y Not upgraded for dose response. Please see Supplementary Tables 10 and 11 for details. zThe interpretation of the magnitude of the effect
was based on the linear dose-response gradient (Supplementary Table 11).
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95% CI: 0.34, 1.45 kg; PMD¼ 0.001; no substantial heterogeneity: I2¼
42.0%; PQ ¼ 0.049), and mixed sources (with SSBs) (3 trials; MD:
2.77 kg; 95% CI: 1.97, 3.57 kg; PMD < 0.001; no heterogeneity: I2 ¼
0.0%; PQ ¼ 0.953) resulted in an increase in the body weight. How-
ever, no other food sources showed a significant effect, with varying
directions of effect. In ad libitum trials, mixed sources (with SSBs) (10
trials; MD: 0.41 kg; 95% CI: 0.09, 0.73 kg; PMD ¼ 0.012; no het-
erogeneity: I2 ¼ 0.0%; PQ ¼ 0.520) and mixed sources (without SSBs)
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(1 trial; MD: 3.10 kg; 95% CI: 2.39, 3.81 kg; PMD < 0.001) resulted in
an increase in body weight, whereas sweets and desserts showed no
significant effect. Although the interaction by food source in subtrac-
tion trials was not significant, we assessed the influence by food source
as the reduction in body weight was driven by a sole food source:
mixed sources (with SSBs) (6 trials; MD: �1.30 kg; 95% CI: �2.54,
�0.06 kg; PMD ¼ 0.040; substantial heterogeneity: I2 ¼ 83.0%; PQ <

0.001).
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Secondary outcomes
Figures 3–7 and Supplemental Figures 13–33 present the effect of

different food sources of fructose-containing sugars on our secondary
outcomes, including BMI, body fat, waist circumference, WHR, and
VAT at 4 levels of energy control. In substitution trials, there was
generally no overall effect on any outcome; however, there was sig-
nificant interaction by food source (P< 0.05) for BMI and influence by
food source for WHR, where 1 food source (fruits) had the most
FIGURE 3. A summary plot for the effect of different food sources of fructose-c
for the summary effects of individual food sources and total food sources on BMI.
least 5 trials available) or fixed-effects models (fewer than 5 trials available). Betwe
0.100 was considered statistically significant, and quantified by the I2 statistic, whe
of total fructose-containing sugars are denoted by the bolded lines, with the effect
the nonbolded lines, with the effect estimates as squares. Any statistically signifi
GRADE of randomized controlled trials are rated as “high” certainty of evidence
squares represent no downgrades, filled black squares indicate a single downgrade
double downgrade for each outcome. DRM, dose-response model; GRADE, Gra
mean difference; N, number; ROB, risk of bias; SSB, sugar-sweetened beverage. (
trials, the certainty of the evidence was graded as high for all outcomes by default
downgrades included risk of bias (ROB) (downgraded if the most trials were consi
unexplained heterogeneity: I2 � 50%; PQ < 0.10); indirectness (downgraded if th
outcomes that limited the generalizability of the results); imprecision [downgraded
benefit set at 0.5 kg for body weight, 0.2 kg/m2 for BMI, 2% for body fat, 0.
publication bias (downgraded if there was evidence of publication bias based on th
confirmation by adjustment using the trim-and-fill analysis of Duval and Tweedie
(B) For the interpretation of the magnitude, we used the MIDs (see A) to assess the
according to the new GRADE guidance. Then, we used the MIDs to assess th
categories according to the GRADE guidance [42,49,51] as follows: a large effect (
and trivial/unimportant effect (<1 MID). *Because categorical subgroup analyses
interaction (with a threshold at 10%E), and dose is a major domain of the assessm
>10%E, rather than presenting the total pooled analysis and downgrade for seriou
substitution and addition trials and SSBs and/or mixed sources (with SSBs) were
GRADE analysis for each individual food source. yNot upgraded for dose respons
of the magnitude of the effect was based on the linear dose-response gradient (S
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(63.2%) of the weight in the pooled analysis. Fruits resulted in a
decrease in the BMI, and mixed sources (with SSBs) resulted in an
increase in the BMI and WHR. In addition to trials, total fructose-
containing sugars resulted in an increase in the BMI and body fat,
with no effect on the waist circumference, WHR, or VAT. A significant
interaction by food sources was found in addition to trials for the BMI,
body fat, and waist circumference and an influence of food sources on
the WHR where fruits (79.5%) had the most of the weight of the
ontaining sugars on the BMI. Data are weighted mean differences (95% CIs)
Analyses conducted using generic, inverse variance random-effects models (at
en-study heterogeneity was assessed by the Cochrane Q statistic, where PQ <

re I2 � 50% was considered evidence of substantial heterogeneity. The effects
estimates as diamonds. The effects of individual food sources are denoted by
cant reductions are highlighted in green and significant increases in red. The
and can be downgraded by 5 domains and upgraded by 1 domain. The white
or upgrades for each outcome, and black squares with a white “2” indicates a
ding of Recommendations, Assessment, Development and Evaluation; MD,
A) Because all included trials were randomized or nonrandomized controlled
and then downgraded or upgraded based on prespecified criteria. Criteria for
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ere were factors absent or present relating to the participants, interventions, or
if the 95% CI crossed the minimally important difference (MID) for harm or
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e funnel plot asymmetry and/or significant Egger or Begg test (P < 0.10), with
[41]). The criteria for upgrades included a significant dose-response gradient.
importance of magnitude of our point estimate using the effect size categories
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e. Please see Supplementary Tables 10 and 12 for details. zThe interpretation
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FIGURE 4. A summary plot for the effect of different food sources of fructose-containing sugars on the body fat. Data are weighted mean differences (95%
CIs) for the summary effects of individual food sources and total food sources on body fat. Analyses conducted using generic, inverse variance random-effects
models (at least 5 trials available) or fixed-effects models (fewer than 5 trials available). Between-study heterogeneity was assessed by the Cochrane Q statistic,
where PQ < 0.100 was considered statistically significant, and quantified by the I2 statistic, where I2 � 50% was considered evidence of substantial hetero-
geneity. The effects of total fructose-containing sugars are denoted by the bolded lines, with the effect estimates as diamonds. The effects of individual food
sources are denoted by the nonbolded lines, with the effect estimates as squares. Any statistically significant reductions are highlighted in green and significant
increases in red. The GRADE of randomized controlled trials are rated as “high” certainty of evidence and can be downgraded by 5 domains and upgraded by 1
domain. The white squares represent no downgrades, the filled black squares indicate a single downgrade or upgrades for each outcome, and the black square
with a white “2” indicates a double downgrade for each outcome. DRM, dose-response model; GRADE, Grading of Recommendations, Assessment,
Development and Evaluation; MD, mean difference; N, number; ROB, risk of bias; SSB, sugar-sweetened beverage. (A) Because all included trials were
randomized or nonrandomized controlled trials, the certainty of the evidence was graded as high for all outcomes by default and then downgraded or upgraded
based on prespecified criteria. Criteria for downgrades included risk of bias (ROB) (downgraded if the most trials were considered to be at high ROB);
inconsistency (downgraded if there was substantial unexplained heterogeneity: I2 � 50%; PQ < 0.10); indirectness (downgraded if there were factors absent or
present relating to the participants, interventions, or outcomes that limited the generalizability of the results); imprecision [downgraded if the 95% CI crossed the
minimally important difference (MID) for harm or benefit set at 0.5 kg for body weight, 0.2 kg/m2 for BMI, 2% for body fat, 0.5 cm for waist circumference, and
0.02 for waist-to-hip ratio] [30,31]; and publication bias (downgraded if there was evidence of publication bias based on the funnel plot asymmetry and/or
significant Egger or Begg test (P < 0.10), with confirmation by adjustment using the trim-and-fill analysis of Duval and Tweedie [41]). The criteria for upgrades
included a significant dose-response gradient. (B) For the interpretation of the magnitude, we used the MIDs (see A) to assess the importance of magnitude of
our point estimate using the effect size categories according to the new GRADE guidance. Then, we used the MIDs to assess the importance of the magnitude of
our point estimates using the effect size categories according to the GRADE guidance [42,49,51] as follows: a large effect (�5� MID); moderate effect (�2�
MID); small important effect (�1� MID); and trivial/unimportant effect (<1 MID). **Where there was a significant interaction by food source in addition trials
and SSBs and/or mixed sources (with SSBs) were the sole food sources in subtraction and ad libitum trials, we performed the GRADE analysis for each
individual food source. yNot upgraded for dose response. Please see Supplementary Tables 10 and 13 for details.
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analyses. Because dose was a major explanatory factor for the effect of
100% fruit juice on BMI and WHR, the data for �10%E and >10%E
for this food were presented separately. Moreover, 100% fruit juice (at
�10%E) resulted in a decrease in the BMI, whereas increases were
seen for the effects of SSBs on the BMI; fruit drinks on the BMI and
body fat; mixed sources (with SSBs) on the BMI, body fat, and waist
circumference; and 100% fruit juice (at >10%E) on the WHR. In
subtraction trials, the removal of total fructose-containing sugars
resulted in a reduction in the waist circumference and WHR, with no
effect on other secondary outcomes. Because there were only 1–2 food
sources in subtraction trials across all outcomes, there was an important
influence by food sources, where the removal of mixed sources (with
SSBs) resulted in a reduction in the waist circumference and WHR. In
ad libitum trials, total fructose-containing sugars did not affect any
outcome, and although there was an influence of food source because
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there were only 1–2 food sources per outcome, neither had any effect.
There was no overall effect of total fructose-containing sugars on VAT,
and although there was the influence of food sources due to too few
food sources, none were significant.

Sensitivity analyses
Supplemental Figures 34–37 present the individual trial influence

analyses on the effect of total fructose-containing sugars at the 4 levels
of energy control on the primary outcome, body weight. The removal
of the study by either Mann et al. [155] or Vazquez-Duran et al. (water
arm) [211] resulted in a loss of significance for the decrease in the body
weight in subtraction trials, and removal of the study by Mann et al.
[155] provided a partial explanation of the evidence of substantial
heterogeneity. Removal of a single trial comparison resulted in a gain
of significance and explained heterogeneity in ad libitum trials [205].



FIGURE 5. A summaryplot for the effect of different food sources of fructose-containing sugars on the waist circumference. Data are weighted mean dif-
ferences (95% CIs) for the summary effects of individual food sources and total food sources on the waist circumference. Analyses conducted using generic,
inverse variance random-effects models (at least 5 trials available) or fixed-effects models (fewer than 5 trials available). Between-study heterogeneity was
assessed by the Cochrane Q statistic, where PQ < 0.100 was considered statistically significant, and quantified by the I2 statistic, where I2 � 50% was considered
evidence of substantial heterogeneity. The effects of total fructose-containing sugars are denoted by the bolded lines, with the effect estimates as diamonds. The
effects of individual food sources are denoted by the nonbolded lines, with the effect estimates as squares. Any statistically significant reductions are highlighted
in green and significant increases in red. The GRADE of randomized controlled trials are rated as “high” certainty of evidence and can be downgraded by 5
domains and upgraded by 1 domain. The white squares represent no downgrades, filled black squares indicate a single downgrade or upgrades for each outcome,
and the black square with a white “2” indicates a double downgrade for each outcome. DRM, dose-response model; GRADE, Grading of Recommendations,
Assessment, Development and Evaluation; MD, mean difference; N, number; ROB, risk of bias; SSB, sugar-sweetened beverage. (A) Because all included trials
were randomized or nonrandomized controlled trials, the certainty of the evidence was graded as high for all outcomes by default and then downgraded or
upgraded based on prespecified criteria. Criteria for downgrades included risk of bias (ROB) (downgraded if most trials were considered to be at high ROB);
inconsistency (downgraded if there was substantial unexplained heterogeneity [I2 � 50%; PQ < 0.10]; indirectness (downgraded if there were factors absent or
present relating to the participants, interventions, or outcomes that limited the generalizability of the results); imprecision [downgraded if the 95% CI crossed the
minimally important difference (MID) for harm or benefit set at 0.5 kg for body weight, 0.2 kg/m2 for BMI, 2% for body fat, 0.5 cm for waist circumference, and
0.02 for waist-to-hip ratio] [30,31]; and publication bias (downgraded if there was evidence of publication bias based on the funnel plot asymmetry and/or
significant Egger or Begg test (P < 0.10), with confirmation by adjustment using the trim-and-fill analysis of Duval and Tweedie [41]). The criteria for upgrades
included a significant dose-response gradient. (B) For the interpretation of the magnitude, we used the MIDs (see A) to assess the importance of magnitude of
our point estimate using the effect size categories according to the new GRADE guidance. Then, we used the MIDs to assess the importance of the magnitude of
our point estimates using the effect size categories according to the GRADE guidance [42,49,51] as follows: a large effect (�5� MID); moderate effect (�2�
MID); small important effect (�1� MID); and trivial/unimportant effect (<1 MID). **Where there was a significant interaction by food source in addition trials
and SSBs and/or mixed sources (with SSBs) were the sole food sources in subtraction and ad libitum trials, we performed the GRADE analysis for each
individual food source. yNot upgraded for dose response. Please see Supplementary Table 10 for details.
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Supplemental Figures 38–62 present the individual trial influence
analyses on the effect of individual food sources, for those analyses that
showed evidence of an interaction or influence by food sources, on the
primary outcome, body weight. Removal of a single trial comparison
resulted in a loss of significance for the increase with added nutritive
(caloric) sweeteners [78] and gain of significance for an increase with
fruit drinks [117] in substitution trials; a loss of significance for the
reduction with 100% fruit juices (�10%E) [109,137], dried fruits
[120], and honey [66]; a gain of significance for an increase with 100%
fruit juices (>10%E) [178] in addition trials; and a loss of significance
for the reduction with mixed sources (with SSBs) [155,211] in sub-
traction trials and for the increase with mixed sources (with SSBs)
[158] in ad libitum trials.
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Supplemental Table 5 tabulates sensitivity analyses for the different
correlation coefficients (0.25 and 0.75) used in paired analyses of
crossover trials for the body weight. The use of these different corre-
lation coefficients did not alter the direction, magnitude, or significance
of the effect or evidence for heterogeneity with the following excep-
tions: loss of significance for the effect of mixed sources (with SSBs)
on the body weight in ad libitum trials (10 trials; MD: 0.35 kg; 95% CI:
�0.15, 0.84 kg; PMD¼ 0.167; I2¼ 11.3%; PQ¼ 0.339) with the use of
0.75; and gain of significant and substantial heterogeneity for SSBs (I2

¼ 53.4%; PQ ¼ 0.002) and fruit drinks (I2 ¼ 53.3%; PQ ¼ 0.010) on
the body weight in substitution trials with the use of 0.75.

Supplemental Table 6 presents the sensitivity analyses for the
removal of trial comparisons in which nonmean summary statistics



FIGURE 6. A summary plot for the effect of different food sources of fructose-containing sugars on the waist-to-hip ratio. Data are weighted mean differences
(95% CIs) for the summary effects of individual food sources and total food sources on the waist-to hip ratio. Analyses conducted using generic, inverse variance
random-effects models (at least 5 trials available) or fixed-effects models (fewer than 5 trials available). Between-study heterogeneity was assessed by the
Cochrane Q statistic, where PQ < 0.100 was considered statistically significant, and quantified by the I2 statistic, where I2 � 50% was considered evidence of
substantial heterogeneity. The effects of total fructose-containing sugars are denoted by the bolded lines, with the effect estimates as diamonds. The effects of
individual food sources are denoted by the nonbolded lines, with the effect estimates as squares. Any statistically significant reductions are highlighted in green
and significant increases in red. The GRADE of randomized controlled trials are rated as “high” certainty of evidence and can be downgraded by 5 domains and
upgraded by 1 domain. The white squares represent no downgrades, filled black squares indicate a single downgrade or upgrades for each outcome, and the
black square with a white “2” indicates a double downgrade for each outcome. DRM, dose-response model; GRADE, Grading of Recommendations,
Assessment, Development and Evaluation; MD, mean difference; N, number; ROB, risk of bias; SSB, sugar-sweetened beverage. (A) Because all included trials
were randomized or nonrandomized controlled trials, the certainty of the evidence was graded as high for all outcomes by default and then downgraded or
upgraded based on prespecified criteria. Criteria for downgrades included risk of bias (ROB) (downgraded if most trials were considered to be at high ROB);
inconsistency (downgraded if there was substantial unexplained heterogeneity: I2 � 50%; PQ < 0.10); indirectness (downgraded if there were factors absent or
present relating to the participants, interventions, or outcomes that limited the generalizability of the results); imprecision [downgraded if the 95% CI crossed the
minimally important difference (MID) for harm or benefit set at 0.5 kg for body weight, 0.2 kg/m2 for BMI, 2% for body fat, 0.5 cm for waist circumference, and
0.02 for waist-to-hip ratio] [30,31]; and publication bias (downgraded if there was evidence of publication bias based on the funnel plot asymmetry and/or
significant Egger or Begg test (P < 0.10) with confirmation by adjustment using the trim-and-fill analysis of Duval and Tweedie [41]). The criteria for upgrades
included a significant dose-response gradient. (B) For the interpretation of the magnitude, we used the MIDs (see A) to assess the importance of magnitude of
our point estimate using the effect size categories according to the new GRADE guidance. Then, we used the MIDs to assess the importance of the magnitude of
our point estimates using the effect size categories according to the GRADE guidance [42,49,51] as follows: a large effect (�5� MID); moderate effect (�2�
MID); small important effect (�1� MID); and trivial/unimportant effect (<1 MID). *The overall analysis for 100% fruit juice showed a significant increase in
WHR; however, this was driven by 5 of the 6 trials with >10%E. Because there was a significant interaction (with a threshold at 10%E) by dose in categorical
subgroup analyses for 100% fruit juice in addition to trials for body weight and BMI and dose is a major domain of the assessment of certainty of evidence, we
presented the data separately for �10%E and >10%E, rather than presenting the total pooled analysis. **1 food source contributed most of the weight in the
analysis (fruit ¼ 63% weight in substitution and 80% in addition trials), thus limiting the ability to assess differences in food sources. Mixed sources (with SSBs)
were the sole food source in subtraction and ad libitum trials. Therefore, we performed a GRADE analysis for each individual food source for each en-
ergy control.
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were used to estimate the mean for body weight and secondary out-
comes. There were 2 trial comparisons, of mixed sources (with SSBs),
in substitution trials, and 3 trial comparisons, 2 of SSBs and 1 of sweets
and desserts, in addition trials. The removal of these trials did not alter
the significance and direction of magnitude of the effect.

Supplemental Figures 63–124 present the sensitivity analyses for
the secondary outcomes. For total fructose-containing sugars, the
removal of a single trial comparison resulted in a loss of significance
for the increase in the body fat [56,118] and the reduction in the waist
circumference in subtraction trials [204,211], a gain of significance
for the decrease in the waist circumference [92] in substitution trials,
the increase in the WHR [93] in addition trials, and the reduction in
the BMI [211] and body fat [115] in subtraction trials, and a partial
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explanation of heterogeneity for the BMI in subtraction trials [211].
For individual food sources for those analyses that showed evidence
of an interaction or influence by food source for secondary outcomes,
removal of a single trial comparison resulted in a loss of significance
for the reduction in the BMI with fruits [113,148] in substitution trials
and 100% fruit juice (at �10%E) [137] in addition trials, for the in-
crease in the body fat with mixed sources (with SSBs) [56] in addition
trials, and for the increase in the WHR with mixed sources (with
SSBs) [92] in substitution trials and with 100% fruit juice (at>10%E)
[178] in addition trials; and a gain of significance for the increase in
the BMI with fruit drinks [212] in substitution trials and the decrease
in the BMI with dried fruits [57] in addition trials, the increase in
waist circumference with fruit drinks [119] in addition trials, and the



FIGURE 7. A summary plot for the effect of different food sources of fructose-containing sugars on VAT. Data are weighted mean differences (95% CIs) for the
summary effects of individual food sources and total food sources on VAT. Analyses conducted using generic, inverse variance random-effects models (at least 5
trials available) or fixed-effects models (fewer than 5 trials available). Between-study heterogeneity was assessed by the Cochrane Q statistic, where PQ < 0.100
was considered statistically significant, and quantified by the I2 statistic, where I2 � 50% was considered evidence of substantial heterogeneity. The effects of
total fructose-containing sugars are denoted by the bolded lines, with the effect estimates as diamonds. The effects of individual food sources are denoted by the
nonbolded lines, with the effect estimates as squares. Any statistically significant reductions are highlighted in green and significant increases in red. The
GRADE of randomized controlled trials are rated as “high” certainty of evidence and can be downgraded by 5 domains and upgraded by 1 domain. The white
squares represent no downgrades, filled black squares indicate a single downgrade or upgrades for each outcome, and the black square with a white “2” indicates
a double downgrade for each outcome. DRM, dose-response model; GRADE, Grading of Recommendations, Assessment, Development and Evaluation; MD,
mean difference; N, number; SMD, standardized mean difference; ROB, risk of bias; SSB, sugar-sweetened beverage; VAT, visceral adipose tissue. (A) Because
all included trials were randomized or nonrandomized controlled trials, the certainty of the evidence was graded as high for all outcomes by default and then
downgraded or upgraded based on prespecified criteria. Criteria for downgrades included risk of bias (ROB) (downgraded if most trials were considered to be at
high ROB); inconsistency (downgraded if there was substantial unexplained heterogeneity: I2 � 50%; PQ < 0.10); indirectness (downgraded if there were
factors absent or present relating to the participants, interventions, or outcomes that limited the generalizability of the results); imprecision [downgraded if the
95% CI crossed the minimally important difference (MID) for harm or benefit set at 0.5 kg for body weight, 0.2 kg/m2 for BMI, 2% for body fat, 0.5 cm for waist
circumference, 0.02 for waist-to-hip ratio [30,31], and 0.08 SMD for VAT (5% of baseline SMD); and publication bias (downgraded if there was evidence of
publication bias based on the funnel plot asymmetry and/or significant Egger or Begg test (P < 0.10) with confirmation by adjustment using the trim-and-fill
analysis of Duval and Tweedie [41]). The criteria for upgrades included a significant dose-response gradient. (B) For the interpretation of the magnitude, we used
the MIDs (see A) to assess the importance of magnitude of our point estimate using the effect size categories according to the new GRADE guidance. Then, we
used the MIDs to assess the importance of the magnitude of our point estimates using the effect size categories according to the GRADE guidance [42,49,51] as
follows: a large effect (�5� MID); moderate effect (�2� MID); small important effect (�1� MID); and trivial/unimportant effect (<1 MID). **Where there
were 2 or few food sources (other than mixed sources), we performed the GRADE analysis for each individual food source.
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reduction in the BMI with mixed sources (with SSBs) [211] and in the
body fat [115] and waist circumference [115] with SSBs in subtrac-
tion trials.

Supplemental Tables 7–10 present sensitivity analyses for the
different correlation coefficients (0.25 and 0.75) used in paired analyses
of crossover trials for secondary outcomes. The use of these different
correlation coefficients did not alter the direction, magnitude, or sig-
nificance of the effect or evidence for heterogeneity for any outcomes
across food sources and levels of energy control, with the following
exceptions: loss of significance for the increase in the body weight with
mixed sources (with SSBs) in ad libitum trials and the increase in the
body fat with total fructose-containing sugars in addition trials with the
use of 0.75; gain of significance for the increase in the waist circum-
ference with total fructose-containing sugars with the use of 0.75, the
decrease in the BMI with 100% fruit juice in addition trials with the use
of 0.25, and the increase in the waist circumference with fruit drinks in
addition trials with either 0.25 or 0.75; and gain of significant and
substantial heterogeneity for SSBs and fruit drinks on the body weight
in substitution trials and total fructose-containing sugars on the waist
circumference in addition trials with the use of 0.75.

Subgroup analyses
Supplemental Figures 125–136 present the subgroup analyses and

continuous meta-regression analyses for the effect of total fructose-
containing sugars, where there were at least 10 trial comparisons, on
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the primary outcome, body weight. There was significant effect
modification by fructose-containing sugar type (generally, trials
providing fruit or honey showed reductions, whereas those providing
sucrose, high-fructose corn syrup, and/or mixed type showed increases,
and others showed no effect in substitution and addition trials), regu-
latory designation (trials providing naturally occurring sugars showed
reductions, whereas those providing added or mixed type showed in-
creases in substitution and addition trials), sugar form matrix (trials
providing liquid sugars showed reductions in substitution trials but
increases in addition trials, whereas those providing mixed types
showed increases in both), follow-up (trials of>8 wk showed increases
in addition trials, whereas trials of �8 wk showed reductions in sub-
traction trials), funding (trials with industry funding showed increases
in substitution trials whereas trials with agency and industry funding
showed increases in ad libitum trials, with others showing no effect),
and continuous age (trials in participants with a greater mean age
showed a greater body weight gain in addition and ad libitum trials).

Supplemental Figures 137–163 present the subgroup analyses and
continuous meta-regression analyses for the effect of individual food
sources of fructose-containing sugars on the primary outcome, body
weight. There was a significant effect modification by the baseline
body weight (trials with a baseline body weight greater than the me-
dian) showed greater reductions for fruit in substitution trials and a
greater increase for fruit drinks in addition trials), randomization
[randomized trials showed a greater increase for mixed sources (with
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SSBs) in substitution trials and for fruit drinks in addition trials], design
[parallel trials showed greater increases for mixed sources (with SSBs)
in substitution trials and crossover trials showed greater increases for
fruit drinks in addition trials], and allocation concealment (low ROB
trials showed greater reductions for fruits in substitution trials, and low
or unclear ROB trials showed greater increases for fruit drinks in
addition trials).

Supplemental Figures 164–187 present the subgroup analyses and
continuous meta-regression analyses for the effect of total fructose-
containing sugars, where there were at least 10 trial comparisons, on
secondary outcomes. There was a significant effect modification
involving multiple (at least 3) outcomes by dose (trials providing
sugars at�10%E showed reductions, whereas trials providing sugars at
>10%E showed increases), sugar form matrix (trials providing liquid
and mixed forms of sugar showed increases), feeding control (meta-
bolic trials showed increases), comparator (trials using nonnutritive
sweetener or starch comparators showed increases), and design
(crossover trials showed increases than the parallel trials) in addition
trials. A number of other subgroup analyses showed subgroup differ-
ences for individual outcomes across levels of energy control, without
any discernable pattern.

Supplemental Figures 188–201 present the subgroup analyses and
continuous meta-regression analyses for the effect of individual food
sources on secondary outcomes. There were no subgroup analyses for
the body fat, waist circumference, WHR, or VAT because there was no
interaction by food source or<10 trial comparisons available across all
4 levels of energy control. Subgroup analyses by food sources were
conducted only for the BMI in substitution and addition trials. There
were no subgroup differences for any food source in the substitution
trials. There was a significant effect modification for the effect of SSBs
and 100% fruit juice on the BMI in addition to trials by incomplete
outcome reporting (low ROB trials showed greater increases or de-
creases, respectively), funding (trials with agency funding showed
greater increases or reductions, respectively), and continuous age (trials
with younger participants showed greater increases or less reductions,
respectively).
Dose-response analyses
Supplemental Figures 202–229 present linear and nonlinear dose-

response analyses for the primary outcome, body weight. In the sub-
stitution trials, there was no dose response for the effect of total
fructose-containing sugars. There was an inverse linear dose response
(Plinear ¼ 0.023) for mixed sources (with SSBs), which was driven by a
single trial [135] (Plinear ¼ 0.356, after removal), and a positive linear
(Plinear ¼ 0.037) and nonlinear (Pnonlinear ¼ 0.002) dose response for
mixed sources (without SSBs), which was driven by a single trial [110]
(Plinear ¼ 0.905; Pnonlinear ¼ 0.518, after removal). In addition trials,
there was a positive linear dose response for total fructose-containing
sugars (Plinear < 0.001), which was driven by the significant interac-
tion by a food source, with higher doses of SSBs (Plinear < 0.001) and
100% fruit juice (Plinear ¼ 0.004; Pnonlinear < 0.001) resulting in greater
increases in the body weight. The relationship for 100% fruit juice was
dependent on the dose threshold. There was a significant positive linear
dose response at doses �10%E (Plinear ¼ 0.006), with doses across the
entire dose-response range (up to 10%E) showing reductions in the
body weight, where smaller doses resulted in greater reductions. In the
subtraction and ad libitum trials, there were no dose responses for total
fructose-containing sugars or any food source.

Supplemental Figures 230–270 present linear and nonlinear dose-
response analyses for secondary outcomes. Total fructose-containing
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sugars showed a positive linear dose response for the BMI, body fat,
and waist circumference in addition trials (Plinear < 0.001, Plinear <

0.001, and Plinear ¼ 0.004, respectively); however, each of these
exhibited a significant interaction by food sources. In addition trials,
there was a positive linear dose response for the effect of SSBs on the
BMI (coeflinear: 0.46 kg/m

2; 95% CI: 0.20, 0.70; P< 0.001 per 355 mL
serving, 8%E), where higher doses of SSBs resulted in greater in-
creases in the BMI; a positive linear dose response for the effect of
100% fruit juice at doses �10%E on the BMI (coeflinear: 0.91 kg/m2;
95% CI: 0.05, 1.77; P ¼ 0.038 per 125 mL serving, 3%E) with most
doses across the dose-response range (up to 10%E) showing reductions
in the BMI, where smaller doses resulted in greater reductions; and a
significant inverse linear dose-response gradient for the effect of dried
fruits on the BMI (coeflinear:�4.58 kg/m2; 95% CI:�8.72,�0.43; P¼
0.030 per 60 mL serving, 5.5%E), where larger doses of dried fruits
resulted in greater reductions in the BMI.
Small-study effects
Supplemental Figures 271–289 present the contour-enhanced fun-

nel plots and publication bias and trim-and-fill (where applicable) as-
sessments for all outcomes where there were �10 trials available.
There was an evidence of the funnel plot asymmetry for total fructose-
containing sugars on the body weight (P ¼ 0.037) and BMI (P ¼
0.067) in the substitution trials. However, adjustment for the funnel
plot asymmetry with the imputation of 3 missing trials by the trim-and-
fill method of Duval and Tweedie did not alter the direction, magnitude,
or significance of the effect, suggesting that there was no meaningful
influence of publication bias on the results (original MD for body
weight: 0.04 kg; 95% CI: �0.07, 0.16; P ¼ 0.469; imputed MD: 0.08
kg; 95% CI: �0.06, 0.22; P ¼ 0.265; original MD for BMI: �0.01 kg/
m2; 95% CI:�0.07, 0.05; P¼ 0.628; imputed MD:�0.02 kg/m2; 95%
CI: �0.08, 0.04; P ¼ 0.537).
GRADE assessment
Figures 2–7 and Supplemental Tables 11–17 present the GRADE

assessments. The certainty of evidence for the effect of total fructose-
containing sugars on the primary outcome, body weight, was very low
in the substitution (no effect), addition (trivial increase), subtraction
(small important reduction), and ad libitum (no effect) trials, owing to
double downgrades for indirectness across the 4 levels of energy
control and single downgrades for imprecision in addition, subtraction,
and ad libitum trials and serious ROB in substitution trials.

Because there was an evidence of a significant interaction or in-
fluence by food sources, the certainty of evidence was assessed for the
individual food sources. The certainty of evidence was moderate for
fruits (trivial reduction) and added nutritive sweeteners (small impor-
tant increase) owing to a downgrade for imprecision and high for mixed
sources (with SSBs) (trivial increase) in substitution trials; high for
SSBs (moderate increase) and mixed sources (with SSBs) (large in-
crease), moderate for 100% fruit juice in trials with �10%E and honey
(moderate reductions) and fruit drinks (small important increase) owing
to downgrades for imprecision, and low for dried fruits (moderate
reduction) owing to downgrades for indirectness and imprecision in
addition trials; low for mixed sources (with SSBs) (moderate reduction)
owing to downgrades for inconsistency and imprecision in subtraction
trials; and moderate for mixed sources (with and without SSBs) (trivial
and large reductions, respectively) owing to a downgrade for impre-
cision and indirectness, respectively, in ad libitum trials. The certainty
of evidence for the remaining food sources that showed no effect was
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generally moderate, ranging from high to low, owing to downgrades for
inconsistency, indirectness, and/or imprecision.

The certainty of evidence for the effect of total fructose-containing
sugars on secondary outcomes was either low or very low owing to
double downgrades for indirectness in each analysis and at least a
single downgrade for ROB, inconsistency, or imprecision, with the
exception of high for the body fat (no effect) with no downgrades and
moderate for the waist circumference (no effect) owing to a downgrade
for imprecision in substitution trials.

If there was an evidence of a significant interaction or influence by
food sources, the certainty of evidence was assessed for individual food
sources. In substitution trials, the certainty of evidence was moderate for
the effect of fruits on the BMI (small important reduction) and mixed
sources (with SSBs) on the BMI and WHR (trivial increases) owing to
downgrades for imprecision. In addition trials, the certainty of evidence
was high for the effect of SSBs (moderate increase), fruit drinks (mod-
erate increase), and dried fruits (large reduction) on the BMI, owing to a
downgrade for serious ROB and upgrade for linear dose response for
SSBs and a downgrade for imprecision and an upgrade for linear dose
response for dried fruits; high for the effect of fruit drinks (trivial in-
crease) on the body fat; moderate for the effect of 100% fruit juice in
trials with�10%E (moderate reduction) and mixed sources (with SSBs)
(moderate increase) on the BMI owing to downgrade for imprecision and
indirectness, respectively; low for the effect of mixed sources (with
SSBs) on the body fat (trivial increase) and waist circumference (large
increase) owing to downgrades for indirectness and imprecision; and low
for 100% fruit juice in trials >10%E on the WHR (trivial increase)
owing to downgrades for indirectness and imprecision. In subtraction
trials, the certainty of evidence was moderate for mixed sources (with
SSBs) on the WHR (trivial reduction) owing to a downgrade for indi-
rectness and very low for mixed sources (with SSBs) on the waist
circumference (large reduction) owing to downgrades for inconsistency,
indirectness, and imprecision. The certainty of evidence for the
remaining food sources that showed no effect was generally moderate,
ranging from high to very low, owing to downgrades for the ROB,
inconsistency, indirectness, and/or imprecision.

Discussion

We conducted a systematic review and meta-analysis of 169 reports
(255 trial comparisons) in 10,357 adult participants with or without
obesity and who had or are at risk for cardiometabolic diseases of the
effects of 14 different food sources of fructose-containing sugars [SSB;
sweetened dairies; sweetened dairy alternatives (soy); 100% fruit juice;
fruit drinks; fruits; dried fruits; mixed fruit forms; sweetened cereal
grains and bars; sweets and desserts; honey; added nutritive (caloric)
sweeteners; mixed sources (with SSBs); and mixed sources (without
SSBs)], with a median dose of 9% to 20% of total energy across 4
different levels of energy control over a median follow-up of 6–18 wk.
Total fructose-containing sugars led to trivial increases in the body
weight (0.28 kg), BMI (0.16 kg/m2), and body fat (0.45%) in addition
trials and small important reductions in the body weight (�0.96 kg) and
moderate reductions in the waist circumference (�1.79 cm) and WHR
(�0.009) in subtraction trials. There was no effect of total fructose-
containing sugars in substitution or ad libitum trials on any marker
of adiposity. There was an evidence of interaction or influence by the
food source in most analyses. Fruits at a median dose of 6%E (doses
ranging from 3.2%E to 14.6%E) led to moderate reductions in the body
weight (�0.38 kg) and small important reductions in the BMI (�0.21
kg/m2) in substitution trials, whereas fruits at lower doses that did not
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exceed the public health threshold of 10% E led to small important
reductions in the body weight (�0.60 kg) in addition trials. Moreover,
100% fruit juice at lower doses (�10% E) led to moderate reductions in
the body weight (�1.30 kg) and BMI (�0.52 kg/m2), dried fruits at a
median dose of 3%E (doses ranging from 1.4%E to 3.8%E) led to
moderate reductions in the body weight (�1.29 kg) and large re-
ductions in the BMI with an evidence of a linear dose-response gradient
[1 serving (60 mL, 5.5%E) was associated with a BMI reduction of
4.58 kg/m2], and honey at a median dose of 9%E (doses ranging from
3.2%E to 33%E) led to moderate reductions in the body weight (�1.65
kg) in addition trials. In addition, 100% fruit juice at doses >10%E led
to trivial increases in the WHR (0.008). Added nutritive (caloric)
sweeteners at a median dose of 10%E (doses ranging from 5%E to 22%
E) led to small important increases in the body weight (0.66 kg) in
substitution trials. SSBs providing excess energy at a median dose of
21%E (doses ranging from 7%E to 25%E) led to moderate increases in
the body weight and BMI with evidence of a linear dose-response
gradient [1 serving (355 mL, 8%E) was associated with a body
weight increase of 1.04 kg and a BMI increase of 0.46 kg/m2] in
addition trials. Fruit drinks providing excess energy at a median dose of
18%E (doses ranging from 5%E to 25%E) led to small important in-
creases in the body weight (0.9 kg) and moderate increases in the BMI
(0.57 kg/m2) in addition trials. Mixed sources (with SSBs) at a median
dose of 20%E (doses ranging from 4%E to 95%E) led to trivial in-
creases in the body weight (0.27 kg), BMI (0.16 kg/m2), and WHR
(0.008) in substitution trials. This same food source providing excess
energy at a median dose of 24%E (doses ranging from 23%E to 28%E)
led to large increases in the body weight (2.77 kg) and moderate in-
creases in BMI (0.90 kg/m2) in addition trials and consumed ad libitum
at a median dose of 22%E (doses ranging from 6%E to 30%E) led to
trivial increases in the body weight (0.41 kg), whereas its removal at a
median dose of 11%E led to moderate reductions in the body weight
(�1.30 kg), large reductions in the waist circumference (�2.83 cm),
and trivial reductions in the WHR (�0.009) in subtraction trials. Other
categories of food sources of fructose-containing sugars assessed
showed no significant effects on markers of adiposity.
Findings in relation to the literature
Our results for total fructose-containing sugars are similar to a

previous systematic review and meta-analysis on the effects of fructose
on the body weight [7], where a significant increase in body weight was
observed when consumed as excess calories but was without effect in
substitution trials. This study builds on the previous study over a
decade ago because it pooled a much larger number of trials (n ¼ 31
and n ¼ 118 substitution trial comparisons; n ¼ 10 and n ¼ 108
addition trial comparisons) and explores interaction by food source.
Furthermore, the increasing effect of SSBs providing excess energy on
the body weight and BMI, with an evidence of a positive linear dose
response, has been consistently reported in the literature [3,6,8,9].

The advantages and lack of harm observed for certain food sources
of fructose-containing sugars agrees with previous observations. A
systematic review and meta-analysis of controlled trials of berries,
which were the predominant type of fruit in the included trials, showed
similar reductions in BMI, and reductions in glycemic control, blood
lipids, blood pressure, and inflammation [221]. Similar improvements
were shown for fruits in this systematic review and meta-analysis of the
effect of food sources of fructose-containing sugars on the glycemic
control [6]. This line of evidence is supported by a systematic review
and meta-analysis of prospective cohort studies, which demonstrated
an inverse association between fruit intake and weight change [11].



TABLE
Summary of trial characteristics1

Trial characteristics Substitution trials Addition trials Subtraction trials Ad libitum trials

Trial comparisons (n) 126 104 13 12
Study size, median n (range) 25 (5–595) 29 (7–158) 68 (7–318) 13 (5–159)
Health status (No. of studies) NW ¼ 8, MW ¼ 34, OW/OB ¼ 36,

diabetes¼ 26, MetS¼ 4, dyslipidemia¼
3, NAFLD ¼ 3, pre-DM ¼ 5, CKD ¼ 2,
coronary artery disease ¼ 1, IBS ¼ 1,
higher CVD risk ¼ 1, HTN ¼ 1,
osteoarthritis ¼ 1

NW ¼ 9, MW ¼ 40, OW/OB ¼ 31,
diabetes ¼ 8, MetS ¼ 3, dyslipidemia ¼
5, NAFLD ¼ 1, higher CVD risk ¼ 1 ,
RA ¼ 1, MW with gall stones ¼ 1, HIV
¼ 3, PCOS ¼ 1

MW ¼ 5, OW/OB ¼ 5, dyslipidemia ¼
1, post-MI ¼ 2

NW ¼ 4, MW ¼ 4, OW/OB ¼ 1,
diabetes ¼ 1, MetS ¼ 1, dyslipidemia ¼
1

Male:female ratio (%)2 54:46 48:52 55:45 46:54
Age (y), mean (range)2 44 (22–70) 38 (20–66) 32 (21–43) 38 (25–47)
Country (No. of comparisons) Antarctic ¼ 1, Australia ¼ 1, Brazil ¼ 9,

Denmark ¼ 2, Finland ¼ 6, France ¼ 4,
Germany ¼ 2, Greece ¼ 3, India ¼ 2,
Iran ¼ 4, Ireland ¼ 1, Israel ¼ 1, Italy ¼
2, Mexico ¼ 3, Netherlands ¼ 2, New
Zealand¼ 1, Poland¼ 3, South Africa¼
4, Spain ¼ 2, Sweden ¼ 3, Switzerland
¼ 7, UK ¼ 27, USA ¼ 36

Australia ¼ 1, Bahrain ¼ 1, Brazil ¼ 4,
Canada ¼ 5, China ¼ 1, Denmark ¼ 9,
Finland ¼ 1, Germany ¼ 3, Greece ¼ 1,
India ¼ 2, Indonesia ¼ 1, Italy ¼ 2, Iran
¼ 7, Malaysia ¼ 3, Mexico ¼ 2,
Netherlands ¼ 2, New Zealand ¼ 2,
Norway ¼ 1, Scotland ¼ 2, Serbia ¼ 3,
Spain ¼ 2, Switzerland ¼ 6, Thailand ¼
3, Turkey ¼ 2, UK ¼ 7, USA ¼ 31

Mexico ¼ 3, South Africa ¼ 2,
Switzerland ¼ 2, UK ¼ 2, USA ¼ 4

Antarctic ¼ 2, Denmark ¼ 4, Germany
¼ 1, Netherlands ¼ 1, Scotland ¼ 1, UK
¼ 3

Setting (%;
inpatients:outpatients:inpatients/
outpatients)

6:85:9 3:91:6 0:100:0 0:100:0

Baseline BW (kg), mean (range)2,3 81 (55–111) 76 (55–102) 82 (65–103) 80 (62–91)
Baseline BMI (kg/m2), mean (range)2,4 28 (21–36) 27 (21–39) 30 (25–37) 28 (23–32)
Study design (%), crossover:parallel 45:55 38:63 31:69 75:25
Feeding control (%), met:supp:DA:met,
supp:supp, DA

19:56:23:2:0 4:90:1:5:0 8:31:38:0:23 33:33:25:8:0

Randomization (%), yes:no:partial5 78:22:0 71:29:0 69:31:0 83:17:0
Fructose-containing sugar dose (% of
total energy intake), mean (range)

16 (1–95) 11 (1–33) 16 (5–24) 18 (5–30)

Follow-up duration (wk), mean (range) 10 (2–52) 7 (2–24) 22 (2–48) 12 (2–24)
Funding sources (%), A:I:A,I:NR 31:21:29:18 57:10:27:7 38:15:15:31 17:25:50:8
Fructose-containing sugar type (No. of
comparisons)

Fructose ¼ 28, sucrose¼ 60, HFCS¼ 3,
fruit ¼ 21, mixed type ¼ 14

Fructose ¼ 9, sucrose ¼ 28, HFCS ¼ 8,
fruit ¼ 51, honey ¼ 5, mixed type ¼ 3

Sucrose ¼ 7, HFCS ¼ 4, mixed type¼ 2 Sucrose ¼ 10, mixed type ¼ 2

Sugar regulatory designation (No. of
comparisons)

Naturally occurring ¼ 21, added ¼ 62,
mixed designation ¼ 43

Naturally occurring ¼ 52, added ¼ 49,
mixed designation ¼ 3

Added ¼ 8, mixed designation ¼ 4 Added ¼ 2, mixed designation ¼ 10

Comparator (No. of comparisons) Starch ¼ 50, glucose ¼ 25, lactose ¼ 7,
maltodextrin ¼ 3, fat ¼ 14, protein ¼ 2,
diet alone ¼ 1, mixed comparator ¼ 24

NNS ¼ 25, water ¼ 9, diet alone ¼ 64,
starch ¼ 1, glucose ¼ 1, fat ¼ 1, mixed
comparator ¼ 3

NNS ¼ 5, water ¼ 4, diet alone ¼ 4 Starch ¼ 6, fat ¼ 2, NNS¼ 2, glucose ¼
2

Food sources of fructose-containing
sugars (No. of comparisons)

SSB ¼ 12, sweetened dairy ¼ 7,
sweetened dairy alternative (soy) ¼ 1,
100% fruit juice ¼ 2, fruit drink ¼ 7,
fruit ¼ 11, dried fruit ¼ 8, mixed fruit
form ¼ 1, sweetened cereal grains and
bars ¼ 3, sweets and desserts ¼ 8, added
nutritive (caloric) sweetener¼ 14, mixed
sources (with SSBs)¼ 44, mixed sources
(without SSBs) ¼ 8

SSB ¼ 23, 100% fruit juice ¼ 23, fruit
drink ¼ 14, fruit ¼ 20, dried fruit ¼ 8,
sweetened cereal grains and bars ¼ 3,
sweets and desserts ¼ 4, honey ¼ 5,
added nutritive (caloric) sweetener ¼ 1,
mixed sources (with SSBs) ¼ 3

SSB¼ 7, mixed sources (with SSBs)¼ 6 Sweets and desserts ¼ 1, mixed sources
(with SSBs) ¼ 10, mixed sources
(without SSBs) ¼ 1
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Dried fruit, which are nutritionally equivalent to fresh fruits in smaller
serving sizes [222], also have evidence to support improvements in
cardiometabolic risk factors [223,224]. The reductions in the body
weight and BMI from 100% fruit juice at lower doses (�10%E), and
increases in the WHR at higher doses (>10%E), agrees with systematic
reviews and meta-analyses of prospective cohort studies, which have
demonstrated U-shaped associations between 100% fruit juice intake
and various cardiometabolic outcomes including incident hypertension
[225], metabolic syndrome [226], and cardiovascular event risk [227]
where protection is seen at low to moderate doses. Evidence showing
fruit juice is associated with weight gain has modeled the relationship
linearly and not assessed nonlinear relationships or threshold effects
[228]. The reductions in body weight observed for honey is supported
by a recent systematic review and meta-analysis of honey, which found
a nonsignificant reduction of �0.92 kg in the body weight along with
improvements in other cardiometabolic risk factors [229]. These
findings may be explained by honey’s rare sugar content. Honey
contains up to 14% by weight (in milligrams per gram) [230] rare
sugars, notably allulose, tagatose, and isomaltulose, all of which have
shown improvements in cardiometabolic risk factors [231–233].
Finally, the lack of harm observed for sweetened cereal grains and bars
agrees with systematic reviews and meta-analyses of sources of whole
grains and fiber [234,235]. The implication that any harm from the
fructose-containing sugars was offset by the benefit of cereal grains,
nuts, and dried fruits contained in the cereal grains and bars.

These advantages and/or the lack of harm may be partly explained by
the food matrix. Dietary fiber can be higher and GI can be lower in some
food sources of fructose-containing sugars. Fruits and dried fruits, which
showed reductions, and sweetened cereal grains and bars, which failed to
show an increase in markers of adiposity, generally have a higher fiber
(e.g., apples 4 g/medium; berries 4 g/cup; raisins 2 g/40 g box; and fruit
and nut bar, 5 g/bar) and lower GI (e.g., apples 38; berries 28; raisins 57;
fruit and nut bar, 40) [236]. Meanwhile, SSBs added nutritive sweet-
eners, and mixed sources (with SSBs), which showed increases in
markers of adiposity, would be expected to be lower in fiber and higher
in GI. There is evidence that low GI diets may improve measures of
adiposity, as demonstrated in a recent systematic review and
meta-analysis of low GI/load diets, in which similar reductions in the
body weight and BMI resulted from low GI than in higher GI diets [237].
Low GI foods and foods high in fiber may reduce circulating insulin and
related incretin hormones, thus increasing satiety after meals, delaying
hunger, and a reducing subsequent energy intake [238–242].

The predominant subgroup effects we identified support the sig-
nificant interactions between food sources of fructose-containing
sugars observed. The significant effect modification by fructose-
containing sugar type, regulatory designation, and dose in substitu-
tion and addition trials reflect the significant reductions seen with fruits,
dried fruits, and 100% fruit juice, and increases seen with SSBs, added
nutritive (caloric) sweeteners, and mixed sources (with SSBs). Fruits
(fructose-containing sugar type subgroup), naturally occurring sugars
(regulatory designation subgroup), and lower doses (categorical dose
subgroup) generally showed reductions in markers of adiposity.
Meanwhile, sucrose and fructose (fructose-containing sugar type sub-
group), added sugars (regulatory designation subgroup), and higher
doses (categorical dose subgroup) generally showed increased in
markers of adiposity.
Strengths and weaknesses
There are several strengths in our systematic review and meta-

analysis. First, we conducted a comprehensive and reproducible
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search and selection process of the literature examining the effect of
food sources of fructose-containing sugars on adiposity. Second, we
collated and synthesized the totality of available evidence from a large
body (169 reports, 255 trial comparisons, n ¼ 10,357) of controlled
intervention studies, which give the greatest protection against bias.
Third, we had comprehensive exploration of possible sources of het-
erogeneity. Fourth, we evaluated the shape and strength of the dose-
response relationships. Fifth, we assessed the overall quality of evi-
dence using the GRADE assessment approach.

Our analyses also presented limitations. First, there was evidence
for a serious ROB in several of the analyses. We downgraded body
weight in substitution trials, BMI in addition to trials of SSBs, body fat,
and WHR addition trials of sweetened cereal grains and bars, waist
circumference of honey in addition trials, and VAT addition trials of
SSBs for serious ROB. Second, there was an evidence of indirectness.
The significant interaction or influence of food source in all sub-
stitutions (except for the body fat and waist circumference) and addi-
tion trials and the limited number of food sources of fructose-
containing sugars available in all subtraction and ad libitum trials
[only 1 or 2 food sources available (SSBs and/or mixed sources)] in the
pooled analyses for total fructose-containing sugars meant the results
could not be generalized to all food sources. Therefore, we double
downgraded for very serious indirectness in these analyses and rated
the evidence separately for individual food sources. The downgrades
for the indirectness of individual food sources were related to insuffi-
cient trial comparisons, which limited generalizability related to
participant type. The absence of long-term trials (>1- y diet duration)
might be another reason to downgrade for serious indirectness; how-
ever, we did not make this downgrade and made our conclusions
specific to medium-term intake, reflecting the median 12-wk follow-up
duration of the included trials. We also cannot rule out an effect of
modification by sex and ethnicity. Although we did not conduct sub-
group analyses by sex and ethnicity, the effect estimates from trials
from different countries or with data presented separately by sex did not
appear to differ meaningfully from the pooled estimates, so we did not
downgrade for serious indirectness in either case. Third, there was
evidence of inconsistency in a few of the pooled estimates. In most
subtraction analyses of mixed sources (with SSBs), we downgraded for
serious inconsistency owing to substantial unexplained heterogeneity.
Finally, there was an evidence of imprecision in almost all pooled
analyses. We downgraded for serious imprecision owing to the
crossing of the prespecified MID, which meant that clinically important
benefits and/or harm could not be ruled out.

Weighing the strengths and limitations, the certainty of evidence
was moderate for the decreasing effect of fruit in substitution trials,
generally moderate (high to low) for the decreasing effect of honey,
dried fruits, and fruits and 100% fruit juice (at �10%E) in addition
trials and the increasing effect of added nutritive (caloric) sweeteners
and mixed sources (with SSBs) in substitution trials, high for the
increasing effect of SSBs in addition trials, low for the decreasing effect
of the removal of mixed sources (with SSBs) in subtraction trials,
moderate for the increasing effect of the mixed sources (with and
without SSBs) in ad libitum trials, and generally moderate (very low to
high) for the effect of all other comparisons on markers of adiposity.

Implications
Our findings demonstrate the importance of focusing on foods,

dietary patterns, and the energy conditions under which they are
consumed, rather than recommending limits on total fructose-
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containing sugars. Dietary guidelines have shifted away from a focus
on single nutrients (sugars, fat, etc.) toward a dietary pattern-based
approach [243]. This shift has been well supported by the Global
Burden of Disease Study, which concludes that a policy focus on
increased intake of foods that are the most important contributors to the
global burden of morbidity and mortality, such as fruits and whole
grains, might have a comparatively larger benefit rather than a focus on
sugars and fat [244]. Currently, obesity, diabetes, and cardiovascular
guidelines generally recommend adhering to plant-based Mediterra-
nean, vegetarian, Portfolio, dietary approaches to stop hypertension,
and low GI dietary patterns, which emphasize some food sources of
fructose-containing sugars (fruits, vegetables, and whole grains),
whereas limiting others (sweets and SSBs) [245–250]. Our research
aligns with these dietary patterns by supporting the selection of food
sources of fructose-containing sugars, which include fresh fruits, 100%
fruit juice at low to moderate intake (�10%E), and dried fruits and
limiting the intake of SSBs, especially when providing excess energy.

Conclusions

In conclusion, the effect of fructose-containing sugars on adiposity
seems to be mediated by both energy control and fructose-containing
food source in adults with or without obesity and who have or are at
risk of cardiometabolic diseases over the medium term (12 wk). The
evidence provides a good indication that excess energy intake at high
doses (�20%E or �100 g/d) from SSBs, other sugary beverages, and
mixed sources (with SSBs) leads to generally moderate increases in
adiposity, whereas the removal of energy from mixed sources (with
SSBs) leads to generally moderate decreases in adiposity. Most other
food sources, with the exception of mixed sources (with SSBs) at high
doses (�20%E or �100 g/d), show no harmful effects irrespective of
energy control, with some sources even showing generally moderate
beneficial effects (fruits, 100% fruit juice, dried fruits, and honey at
lower doses of �10%E or �50 g/d). The main sources of uncertainty
across the analyses were imprecision and indirectness with a lack of
food sources assessed in subtraction and ad libitum trials. To address
these uncertainties, there remains a need for more large, high-quality
randomized trials assessing a broader variety of food sources of
fructose-containing sugars. In the meantime, these findings suggest that
policy and guideline makers should consider the role of energy control
and food source for the prevention and management of obesity.
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